Overview
AI-powered information retrieval platform by Microsoft Azure. Through Langdock’s integration, you can access and manage Azure AI Search directly from your conversations.Authentication: API Key
Category: AI & Search
Availability: All workspace plans
Category: AI & Search
Availability: All workspace plans
Available Actions
Search Documents
azureaisearch.searchDocuments
Searches the database for the most relevant information based on the query provided
Requires Confirmation: No
Parameters:
query
(VECTOR, Required): Vector query for semantic search
value
: Array of search result objects containing:@search.score
: Relevance score@search.highlights
: Highlighted text snippets- Field values from the indexed documents
@odata.count
: Total number of results@odata.nextLink
: Link to next page of results (if available)
List Datasets
azureaisearch.listDatasets
Lists all datasets in a BigQuery project
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project ID containing the datasets
List Tables
azureaisearch.listTables
Lists all tables in a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project IDdatasetId
(TEXT, Required): The dataset ID containing the tables
Get Table Schema
azureaisearch.getTableSchema
Gets the schema information for a specific BigQuery table
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project IDdatasetId
(TEXT, Required): The dataset ID containing the tabletableId
(TEXT, Required): The table ID to get schema information for
Execute Query
azureaisearch.executeQuery
Executes a SQL query in BigQuery and returns the results
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project ID to execute the query inquery
(MULTI_LINE_TEXT, Required): The SQL query to execute in BigQueryuseLegacySql
(BOOLEAN, Optional): Whether to use legacy SQL syntax (default: false for Standard SQL)
jobReference
: Job reference informationtotalRows
: Total number of rows in the resultrows
: Array of result rows containing field valuesschema
: Schema of the result fieldsjobComplete
: Whether the job completed successfully
Get Table Data
azureaisearch.getTableData
Retrieves actual data rows from a BigQuery table
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project IDdatasetId
(TEXT, Required): The dataset ID containing the tabletableId
(TEXT, Required): The table ID to retrieve data frommaxResults
(NUMBER, Optional): Maximum number of rows to return (optional)
Create Dataset
azureaisearch.createDataset
Creates a new dataset in BigQuery
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project IDdatasetId
(TEXT, Required): The ID for the new datasetdescription
(TEXT, Optional): Optional description for the datasetlocation
(TEXT, Optional): Geographic location for the dataset (e.g., US, EU)
Create Table
azureaisearch.createTable
Creates a new table in a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project IDdatasetId
(TEXT, Required): The dataset ID to create the table intableId
(TEXT, Required): The ID for the new tabledescription
(TEXT, Optional): Optional description for the tableschema
(MULTI_LINE_TEXT, Optional): Table schema as JSON array of field objects (optional)
Insert Table Data
azureaisearch.insertTableData
Inserts data rows into a BigQuery table
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project IDdatasetId
(TEXT, Required): The dataset ID containing the tabletableId
(TEXT, Required): The table ID to insert data intorows
(MULTI_LINE_TEXT, Required): JSON array of row objects to insertignoreUnknownValues
(BOOLEAN, Optional): Whether to ignore unknown values in the dataskipInvalidRows
(BOOLEAN, Optional): Whether to skip rows that contain invalid data
Get Dataset Info
azureaisearch.getDatasetInfo
Gets detailed information about a BigQuery dataset
Requires Confirmation: No
Parameters:
projectId
(TEXT, Required): The Google Cloud project IDdatasetId
(TEXT, Required): The dataset ID to get information for
Common Use Cases
Data Management
Manage and organize your Azure AI Search data
Automation
Automate workflows with Azure AI Search
Reporting
Generate insights and reports
Integration
Connect Azure AI Search with other tools
Best Practices
Getting Started:
- Enable the Azure AI Search integration in your workspace settings
- Authenticate using API Key
- Test the connection with a simple read operation
- Explore available actions for your use case
Important Considerations:
- Ensure proper authentication credentials
- Respect rate limits and API quotas
- Review data privacy settings
- Test operations in a safe environment first
Troubleshooting
Issue | Solution |
---|---|
Authentication failed | Verify your API Key credentials |
Rate limit exceeded | Reduce request frequency |
Data not found | Check permissions and data availability |
Connection timeout | Verify network connectivity |