Overview

AI-powered information retrieval platform by Microsoft Azure. Through Langdock’s integration, you can access and manage Azure AI Search directly from your conversations.
Authentication: API Key
Category: AI & Search
Availability: All workspace plans

Available Actions

Search Documents

azureaisearch.searchDocuments
Searches the database for the most relevant information based on the query provided Requires Confirmation: No Parameters:
  • query (VECTOR, Required): Vector query for semantic search
Output: Returns search results with the following structure:
  • value: Array of search result objects containing:
    • @search.score: Relevance score
    • @search.highlights: Highlighted text snippets
    • Field values from the indexed documents
  • @odata.count: Total number of results
  • @odata.nextLink: Link to next page of results (if available)

List Datasets

azureaisearch.listDatasets
Lists all datasets in a BigQuery project Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID containing the datasets
Output: Returns an array of datasets with their IDs, names, and metadata

List Tables

azureaisearch.listTables
Lists all tables in a BigQuery dataset Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID
    • datasetId (TEXT, Required): The dataset ID containing the tables
Output: Returns an array of tables with their IDs, names, and metadata

Get Table Schema

azureaisearch.getTableSchema
Gets the schema information for a specific BigQuery table Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID
    • datasetId (TEXT, Required): The dataset ID containing the table
    • tableId (TEXT, Required): The table ID to get schema information for
Output: Returns the table schema including field names, types, and constraints

Execute Query

azureaisearch.executeQuery
Executes a SQL query in BigQuery and returns the results Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID to execute the query in
    • query (MULTI_LINE_TEXT, Required): The SQL query to execute in BigQuery
    • useLegacySql (BOOLEAN, Optional): Whether to use legacy SQL syntax (default: false for Standard SQL)
Output: Returns query results with the following structure:
  • jobReference: Job reference information
  • totalRows: Total number of rows in the result
  • rows: Array of result rows containing field values
  • schema: Schema of the result fields
  • jobComplete: Whether the job completed successfully

Get Table Data

azureaisearch.getTableData
Retrieves actual data rows from a BigQuery table Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID
    • datasetId (TEXT, Required): The dataset ID containing the table
    • tableId (TEXT, Required): The table ID to retrieve data from
    • maxResults (NUMBER, Optional): Maximum number of rows to return (optional)
Output: Returns table data with rows and schema information

Create Dataset

azureaisearch.createDataset
Creates a new dataset in BigQuery Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID
    • datasetId (TEXT, Required): The ID for the new dataset
    • description (TEXT, Optional): Optional description for the dataset
    • location (TEXT, Optional): Geographic location for the dataset (e.g., US, EU)
Output: Returns the created dataset with its ID and metadata

Create Table

azureaisearch.createTable
Creates a new table in a BigQuery dataset Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID
    • datasetId (TEXT, Required): The dataset ID to create the table in
    • tableId (TEXT, Required): The ID for the new table
    • description (TEXT, Optional): Optional description for the table
    • schema (MULTI_LINE_TEXT, Optional): Table schema as JSON array of field objects (optional)
Output: Returns the created table with its ID and schema information

Insert Table Data

azureaisearch.insertTableData
Inserts data rows into a BigQuery table Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID
    • datasetId (TEXT, Required): The dataset ID containing the table
    • tableId (TEXT, Required): The table ID to insert data into
    • rows (MULTI_LINE_TEXT, Required): JSON array of row objects to insert
    • ignoreUnknownValues (BOOLEAN, Optional): Whether to ignore unknown values in the data
    • skipInvalidRows (BOOLEAN, Optional): Whether to skip rows that contain invalid data
Output: Returns insertion results with success/failure information

Get Dataset Info

azureaisearch.getDatasetInfo
Gets detailed information about a BigQuery dataset Requires Confirmation: No Parameters:
  • projectId (TEXT, Required): The Google Cloud project ID
    • datasetId (TEXT, Required): The dataset ID to get information for
Output: Returns dataset information including creation time, location, and access controls

Common Use Cases

Data Management

Manage and organize your Azure AI Search data

Automation

Automate workflows with Azure AI Search

Reporting

Generate insights and reports

Integration

Connect Azure AI Search with other tools

Best Practices

Getting Started:
  1. Enable the Azure AI Search integration in your workspace settings
  2. Authenticate using API Key
  3. Test the connection with a simple read operation
  4. Explore available actions for your use case
Important Considerations:
  • Ensure proper authentication credentials
  • Respect rate limits and API quotas
  • Review data privacy settings
  • Test operations in a safe environment first

Troubleshooting

IssueSolution
Authentication failedVerify your API Key credentials
Rate limit exceededReduce request frequency
Data not foundCheck permissions and data availability
Connection timeoutVerify network connectivity

Support

For additional help with the Azure AI Search integration, contact support@langdock.com