Skip to main content
POST
/
openai
/
{region}
/
v1
/
embeddings
Creates embeddings for the given input text.
curl --request POST \
  --url https://api.langdock.com/openai/{region}/v1/embeddings \
  --header 'Authorization: <authorization>' \
  --header 'Content-Type: application/json' \
  --data '{
  "model": "text-embedding-ada-002",
  "input": "The quick brown fox jumps over the lazy dog",
  "encoding_format": "float"
}'
{
  "data": [
    {
      "embedding": [
        0.0023064255,
        -0.009327292,
        "..."
      ],
      "index": 0,
      "object": "embedding"
    }
  ],
  "model": "text-embedding-ada-002",
  "object": "list",
  "usage": {
    "prompt_tokens": 9,
    "total_tokens": 9
  }
}
In dedicated deployments, api.langdock.com maps to <Base URL>/api/public
Creates embeddings for text using OpenAI’s embedding models. This endpoint follows the OpenAI API specification and the requests are sent to the Azure OpenAI endpoint.
To use the API you need an API key. Admins can create API keys in the settings.
All parameters from the OpenAI Embeddings endpoint are supported according to the OpenAI specifications, with the following exceptions:
  • model: Currently only the text-embedding-ada-002 model is supported.
  • encoding_format: Supports both float and base64 formats.

Rate limits

The rate limit for the Embeddings endpoint is 500 RPM (requests per minute) and 60.000 TPM (tokens per minute). Rate limits are defined at the workspace level - and not at an API key level. If you exceed your rate limit, you will receive a 429 Too Many Requests response. Please note that the rate limits are subject to change, refer to this documentation for the most up-to-date information. In case you need a higher rate limit, please contact us at [email protected].

Using OpenAI-compatible libraries

As the request and response format is the same as the OpenAI API, you can use popular libraries like the OpenAI Python library or the Vercel AI SDK to use the Langdock API.

Example using the OpenAI Python library

from openai import OpenAI
client = OpenAI(
  base_url="https://api.langdock.com/openai/eu/v1",
  api_key="<YOUR_LANGDOCK_API_KEY>"
)

embedding = client.embeddings.create(
  model="text-embedding-ada-002",
  input="The quick brown fox jumps over the lazy dog",
  encoding_format="float"
)

print(embedding.data[0].embedding)

Example using the Vercel AI SDK in Node.js

import { createOpenAI } from "@ai-sdk/openai";

const langdockProvider = createOpenAI({
  baseURL: "https://api.langdock.com/openai/eu/v1",
  apiKey: "<YOUR_LANGDOCK_API_KEY>",
});

const response = await langdockProvider.embeddings.create({
  model: "text-embedding-ada-002",
  input: "The quick brown fox jumps over the lazy dog",
  encoding_format: "float",
});

console.log(response.data[0].embedding);

Headers

Authorization
string
required

Path Parameters

region
enum<string>
required
Available options:
eu,
us

Body

application/json
input
required
model
required
encoding_format
enum<string>
default:float
Available options:
float,
base64
dimensions
integer
Required range: x >= 1
user
string

Response

data
object[]
required
model
string
required
object
enum<string>
required
Available options:
list
usage
object
required